

1st International Industrial Chemistry Conference

26-27th February 2021

Virtual

Photocatalytic Degradation of Textile Wastewater Using Immobilized CuCo₂O₄ Nanocomposite Thin Films

Muhammad Mohsin^{1*}, Ijaz Ahmad Bhatti¹, Muhammad Fuqran¹, Ambreen Ashar^{1,2} and Qamar ul Hassan¹

¹Department of Chemistry, University of Agriculture, Faisalabad, ²Department of Chemistry, Government College Women University, Faisalabad

*E-mail: m.mohsin618@gmail.com

Background and Objectives

Textile industrial wastewater The has become a leading source of water pollution due to diverse nature of pollutants present in the effluents which are hazardous and toxic. Approximately, 280,000 tons of the textile dyes are discharged into water sinks through textile effluents. So (AOPs) is an effective method used for wastewater treatment. Heterogeneous

CB (e-

TiO₂

photocatalysis by semiconductor is a new, operative, and rapid method for the removal of impurities from industrial leftover water using CuCo₂O₄

Experimental and Results/Discussion

Conclusion

Form the above results, it is concluded that **CuCo₂O₄** is more efficient for the degradation of dye. The results revealed that at optimized condition more than 87% degradation could be achieved. The results of this study predicted that advance oxidation process (AOPs) could be considered as one of the most effective process for treatment of Industrial Effluents by optimizing reaction condition by RSM

Reference

1. M. Mohsin, I. A. Bhatti, A. Ashar, A. Mahmood, Q. ul Hassan and M. Igbal. J. Mater. Res. Technol. 2020, 9, 4218.

2. M. Ahmad, I. Bhatti, K. Qureshi, N. Ahmad, J. Nisar, M. Zuber, A. Ashar, M. Khan and M. Igbal. J. Mol. Lig. 2020, 301, 112343.

