Virtual

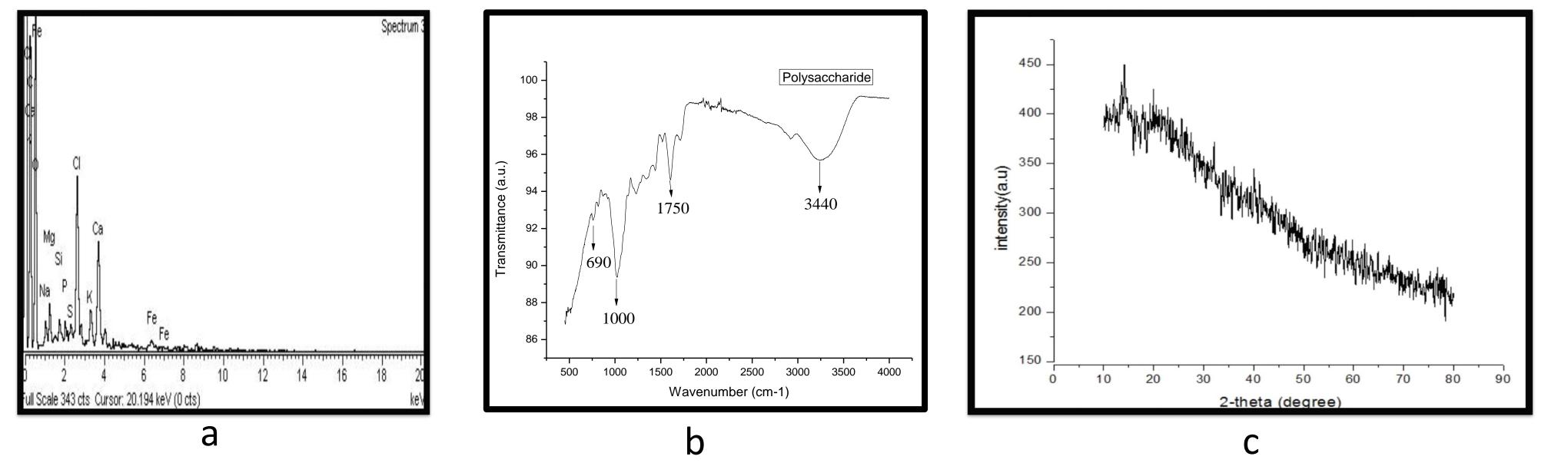
1st International Industrial Chemistry Conference

26-28th February 2021

Plant-mediated Green Synthesis and Biological Activities of Polysaccharide Nanoparticles

Through Top-Down Approach

Asif Ahmad, Behramand*


* dr.behramand@icp.edu.pk

Department of Chemistry, Islamia College University Peshawar, Kpk, Pakistan.

Key words: Polysaccharide nanoparticles, SEM.

INTRODUCTION

Due to their biocompatible and biodegradable nature and their medicinal properties, polysaccharides nanoparticles (Ps-NPs) have drawn significant attention. Polysaccharides nanoparticles are used in targeted drug delivery, wound healing, catalysis, biosensing, and agents with antiviral, antimicrobial, anticancer, antibacterial and antifungal, capabilities [1,2]. The current work deals with synthesis of nanoparticles based on polysaccharides extracted from the plant Rosa webbiana (local name Palwari) and evaluation of their biological properties.

EXPERIMENTAL

The plant R. webbiana was collected from local area of district Buner (Pir Baba) KPK, Pakistan in the month of March 2018. The plant material was extracted with n-hexane, ethanol and hot water method as shown in figure. Polysaccharide from the plant were extracted by precipitating with ethanol and deprotienized by HCL method.

Figure 3. (a) EDX of Ps-NPs (b) FT-IR spectra of polysaccharides (c) XRD spectrum of Ps-NPs As shown in the figure 3(a) EDX of the Ps-NPs committed the existence of C, O and N confirms polysaccharides. In fig 3(b) FTIR spectra shows OH, C \equiv C, C=C and C-H confirmed polysaccharides. While in fig3(c) XRD shows the nanoparticle size which is 0.15nm. Table 1 and 2: Antioxidant and Antibacterial activity of polysaccharides and its nanoparticles.

ple	Concentrati on	Percent scavenging effect	IC ₅₀ (μg/mL)	Zone of inhibition (positive Bacteria mm) against Gram				Zone of inhibition (mm)			The ps-60,ps-70,ps-80,
0	1000 500 250	51.66±2.51 43.33±1.52 40.66±2.08	40					against Gram negative Bacteria			np-1 and np-2 shows
	125 1000	35.33±3.05 48.33±2.51		Samples	Staphyloc occus	S.aure aus		S.typ hi	E.coli	Pseudom onas	weak anti-bacterial
70	500 250	40.66±1.52 38.33±1.58	42 19		Epidermidis					argenuos a	
	125	34.45±2.53 86.33±2.51			0.1 mg/ml 0.2 mg/ml	0.1 0.1 mg/ml mg/m			0.1 mg/ml 0.2 mg/ml	activity against gram	
	500 250	85.33 ±3.51 76.33±2.67			0.2 mg/ml	mg/m mg/	0.2 mg/	0.2 mg/ml		positive bacteria as	
	125 1000	63.34 ±2.64 23±3.05					I	ml			compared to gram
	500 250 125	19±2 16±2 14±3	60	Ps-60	11	10	14	17	20	24	negative bacteria. The
	1000 84.83±3.05 500 70.35±2.08	84.83±3.05		Ps-70	7	12	15	23	25	29	better result can be
<u>!</u>	250 125	67.25±3.05 61.12±2.51	25	Ps-80	8	13	18	22	26	32	shown by np-2 as shown
rbic 5	1000 500	90.51±0.53 83.50±0.65 80.81±0.53 70.65±0.43	10	Np-1	11	13	16	23	29	34	in table 2.
	250 125			Np-2	18	9	16	30		39	πιαρίς Ζ.
				Ceftriaxone	3	7	15	47	51	54	
Table 1						Table 2					

Nanoprecipitation is a process in which Ps-NPs can be prepared.

Figure 1(a). Photographic illustration of *R. webbiana* 1(b). Schematic diagram for the synthesis of polysaccharide nanoparticles.

RESULT AND DISCUSSION

The shape and particle size of Ps-NPs were observed by SEM as shown in fig 2. Mostly shape of nanoparticles were spherical with different sizes but a minute amount of anisotropic nanostructures such as nano-triangles, nanorods a number of hexagonal and polygonal nanomaterials were and also found out.

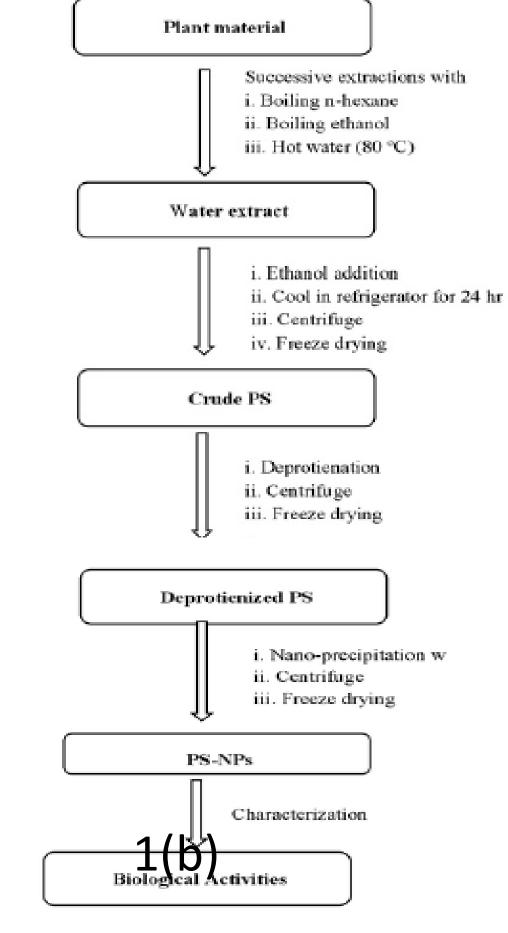


Table 1

Ps-80 shows the highest antioxidant activity as shown in table 1.

CONCLUSIONS

based nanoparticles were Polysaccharides synthesized and characterized. The synthesized nanoparticles indicated strong antimicrobial activities. It is efficient and with green energy extend the generation of Ps-NPs an industrial scale Thus the present studies revealed that using polysaccharide nanoparticles have various application in the area of nanomedicine, catalysis and drug delivery etc. **REFERENCES:** 1)Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P, Bannerjee SK. Drug delivery systems: An updated review, Int J Pharm Investig 2012; 2(1): 2-11, 2) M. Gerencer, P.L. Turecek, O. Kistner, A. Mitterer, Antivir. Res. 72 (2006) 153-156

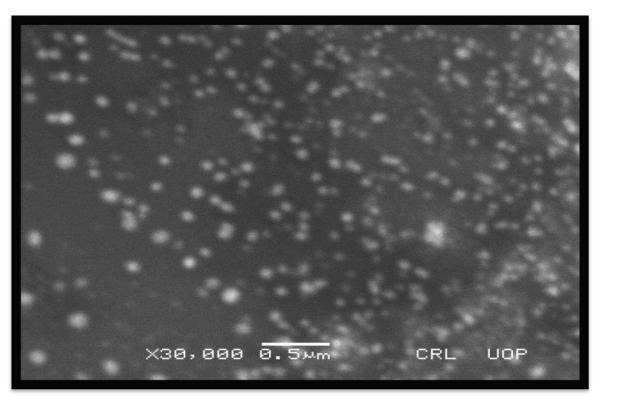


Figure 2. SEM images of Ps-NPS.